Home | Quick Search | Advanced Search | Bibliography submission | Bibliography submission using bibtex | Bibliography submission using bibtex file | Links | Help | Internal

Details:

   
TitleModuli of McKay quiver representations II: Gröbner basis techniques
Author(s) Alastair Craw, Diane Maclagan, Rekha R. Thomas
TypeArticle in Journal
AbstractIn this paper we introduce several computational techniques for the study of moduli spaces of McKay quiver representations, making use of Gröbner bases and toric geometry. For a finite abelian group G ⊂ GL ( n , k ) , let Y θ be the coherent component of the moduli space of θ-stable representations of the McKay quiver. Our two main results are as follows: we provide a simple description of the quiver representations corresponding to the torus orbits of Y θ , and, in the case where Y θ equals Nakamura
KeywordsMcKay quiver, Gröbner bases, G-Hilbert scheme
ISSN0021-8693
URL http://www.sciencedirect.com/science/article/pii/S002186930700107X
LanguageEnglish
JournalJournal of Algebra
Volume316
Number2
Pages514 - 535
Year2007
NoteComputational Algebra
Edition0
Translation No
Refereed No
Webmaster