Home | Quick Search | Advanced Search | Bibliography submission | Bibliography submission using bibtex | Bibliography submission using bibtex file | Links | Help | Internal

Details:

   
TitleProblèmes de construction de type polynomial I Caractérisations polynomiales des propriétés usuelles d
Author(s) Frédéric Bertrand
TypeArticle in Journal
AbstractA design is said to be a polynomial design if the coordinates of the points of the design are the solutions of a system of polynomial equations or inequalities; such a system can always be solved using semidefinite programming or Gröbner bases. Many praised properties of designs, such as alphabetic optimality and orthogonal blocking, can be easily stated in the framework of polynomial designs. The same holds true for G -weakly invariant designs, G being any compact group of matrices. To cite this article: F. Bertrand, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
ISSN1631-073X
URL http://www.sciencedirect.com/science/article/pii/S1631073X08002781
LanguageEnglish
JournalComptes Rendus Mathematique
Volume346
Number2122
Pages1181 - 1186
Year2008
Edition0
Translation No
Refereed No
Webmaster