Home | Quick Search | Advanced Search | Bibliography submission | Bibliography submission using bibtex | Bibliography submission using bibtex file | Links | Help | Internal

Details:

   
TitleGr\"obner bases for the Hilbert ideal and coinvariants of the dihedral group $D_2p$.
Author(s) Martin Kohls, Müfit Sezer
TypeArticle in Journal
AbstractWe consider a finite dimensional representation of the dihedral group D2p over a field of characteristic two where p is an odd integer and study the corresponding Hilbert ideal IH. We show that IH has a universal Gröbner basis consisting of invariants and monomials only. We provide sharp bounds for the degree of an element in this basis and in a minimal generating set for IH. We also compute the top degree of coinvariants when p is prime.
KeywordsDihedral groups;coinvariants;Hilbert ideal;universal Gröbner bases;
ISSN0025-584X; 1522-2616/e
File
URL http://onlinelibrary.wiley.com/doi/10.1002/mana.201100316/abstract;jsessionid=37D7BFF9EC65F7BF5F8DC90068D99755.f01t01
LanguageEnglish
JournalMath. Nachr.
Volume285
Number16
Pages1974--1980
PublisherWiley (Wiley-VCH), Weinheim
Year2012
Edition0
Translation No
Refereed No
Webmaster