Home | Quick Search | Advanced Search | Bibliography submission | Bibliography submission using bibtex | Bibliography submission using bibtex file | Links | Help | Internal


TitleImproved decoding of affine-variety codes
Author(s) Chiara Marcolla, Emmanuela Orsini, Massimiliano Sala
TypeArticle in Journal
AbstractGeneral error locator polynomials are polynomials able to decode any correctable syndrome for a given linear code. Such polynomials are known to exist for all cyclic codes and for a large class of linear codes. We provide some decoding techniques for affine-variety codes using some multidimensional extensions of general error locator polynomials. We prove the existence of such polynomials for any correctable affine-variety code and hence for any linear code. We propose two main different approaches, that depend on the underlying geometry. We compute some interesting cases, including Hermitian codes. To prove our coding theory results, we develop a theory for special classes of zero-dimensional ideals, that can be considered generalizations of stratified ideals. Our improvement with respect to stratified ideals is twofold: we generalize from one variable to many variables and we introduce points with multiplicities.
URL http://www.sciencedirect.com/science/article/pii/S0022404912000114
JournalJournal of Pure and Applied Algebra
Pages1533 - 1565
Translation No
Refereed No