Home | Quick Search | Advanced Search | Bibliography submission | Bibliography submission using bibtex | Bibliography submission using bibtex file | Links | Help | Internal


TitleResultant over the residual of a complete intersection
Author(s) Laurent Buse, Mohamed Elkadi, Bernard Mourrain
TextJournal of Pure and Applied Algebra to appear.
TypeTechnical Report, Misc
AbstractIn this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal (F : G) and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples.
JournalJournal of Pure and Applied Algebra
Translation No
Refereed No